p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.97C24, C24.160C23, C42.139C23, C22.157C25, C4⋊Q8⋊49C22, (C4×D4)⋊77C22, (C4×Q8)⋊73C22, C4⋊C4.510C23, (C2×C4).147C24, (C2×C42)⋊80C22, C22⋊Q8⋊58C22, C22≀C2⋊22C22, C24⋊C22⋊9C2, (C2×D4).345C23, C4.4D4⋊48C22, C22⋊C4.65C23, (C2×Q8).322C23, C42.C2⋊71C22, C42⋊2C2⋊50C22, C42⋊C2⋊71C22, C22.32C24⋊27C2, C4⋊D4.127C22, (C22×C4).416C23, C22.45C24⋊26C2, C2.68(C2.C25), C22.D4⋊65C22, C23.36C23⋊65C2, C22.50C24⋊43C2, C22.57C24⋊23C2, C22.36C24⋊44C2, (C2×C22⋊C4)⋊67C22, SmallGroup(128,2300)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.157C25
G = < a,b,c,d,e,f,g | a2=b2=d2=1, c2=e2=a, f2=g2=ba=ab, dcd=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 708 in 479 conjugacy classes, 378 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C23.36C23, C22.32C24, C22.36C24, C22.45C24, C22.50C24, C24⋊C22, C22.57C24, C22.157C25
Quotients: C1, C2, C22, C23, C24, C25, C2.C25, C22.157C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 10)(2 11)(3 12)(4 9)(5 27)(6 28)(7 25)(8 26)(13 24)(14 21)(15 22)(16 23)(17 29)(18 30)(19 31)(20 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2)(3 4)(5 8)(6 7)(9 12)(10 11)(13 23)(14 22)(15 21)(16 24)(17 30)(18 29)(19 32)(20 31)(25 28)(26 27)
(1 6 3 8)(2 25 4 27)(5 11 7 9)(10 28 12 26)(13 30 15 32)(14 19 16 17)(18 22 20 24)(21 31 23 29)
(1 13 12 22)(2 21 9 16)(3 15 10 24)(4 23 11 14)(5 17 25 31)(6 30 26 20)(7 19 27 29)(8 32 28 18)
(1 5 12 25)(2 8 9 28)(3 7 10 27)(4 6 11 26)(13 17 22 31)(14 20 23 30)(15 19 24 29)(16 18 21 32)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,10)(2,11)(3,12)(4,9)(5,27)(6,28)(7,25)(8,26)(13,24)(14,21)(15,22)(16,23)(17,29)(18,30)(19,31)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,8)(6,7)(9,12)(10,11)(13,23)(14,22)(15,21)(16,24)(17,30)(18,29)(19,32)(20,31)(25,28)(26,27), (1,6,3,8)(2,25,4,27)(5,11,7,9)(10,28,12,26)(13,30,15,32)(14,19,16,17)(18,22,20,24)(21,31,23,29), (1,13,12,22)(2,21,9,16)(3,15,10,24)(4,23,11,14)(5,17,25,31)(6,30,26,20)(7,19,27,29)(8,32,28,18), (1,5,12,25)(2,8,9,28)(3,7,10,27)(4,6,11,26)(13,17,22,31)(14,20,23,30)(15,19,24,29)(16,18,21,32)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,10)(2,11)(3,12)(4,9)(5,27)(6,28)(7,25)(8,26)(13,24)(14,21)(15,22)(16,23)(17,29)(18,30)(19,31)(20,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,8)(6,7)(9,12)(10,11)(13,23)(14,22)(15,21)(16,24)(17,30)(18,29)(19,32)(20,31)(25,28)(26,27), (1,6,3,8)(2,25,4,27)(5,11,7,9)(10,28,12,26)(13,30,15,32)(14,19,16,17)(18,22,20,24)(21,31,23,29), (1,13,12,22)(2,21,9,16)(3,15,10,24)(4,23,11,14)(5,17,25,31)(6,30,26,20)(7,19,27,29)(8,32,28,18), (1,5,12,25)(2,8,9,28)(3,7,10,27)(4,6,11,26)(13,17,22,31)(14,20,23,30)(15,19,24,29)(16,18,21,32) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,10),(2,11),(3,12),(4,9),(5,27),(6,28),(7,25),(8,26),(13,24),(14,21),(15,22),(16,23),(17,29),(18,30),(19,31),(20,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11),(13,23),(14,22),(15,21),(16,24),(17,30),(18,29),(19,32),(20,31),(25,28),(26,27)], [(1,6,3,8),(2,25,4,27),(5,11,7,9),(10,28,12,26),(13,30,15,32),(14,19,16,17),(18,22,20,24),(21,31,23,29)], [(1,13,12,22),(2,21,9,16),(3,15,10,24),(4,23,11,14),(5,17,25,31),(6,30,26,20),(7,19,27,29),(8,32,28,18)], [(1,5,12,25),(2,8,9,28),(3,7,10,27),(4,6,11,26),(13,17,22,31),(14,20,23,30),(15,19,24,29),(16,18,21,32)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2J | 4A | ··· | 4F | 4G | ··· | 4AA |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2.C25 |
kernel | C22.157C25 | C23.36C23 | C22.32C24 | C22.36C24 | C22.45C24 | C22.50C24 | C24⋊C22 | C22.57C24 | C2 |
# reps | 1 | 3 | 6 | 6 | 6 | 6 | 1 | 3 | 6 |
Matrix representation of C22.157C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 2 | 4 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 |
2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 3 | 3 | 3 | 1 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 | 0 | 2 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 4 | 3 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 4 | 3 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,0,1,2,2,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,2,0,3,0,0,0,0,2,2,0,3,0,0,0,0,0,4,0,3],[2,3,3,0,0,0,0,0,4,3,3,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,3,2,0,0,0,0,0,3,0,2,0,0,0,0,2,3,0,0,0,0,0,0,0,1,0,2],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,3,0,1],[4,0,1,4,0,0,0,0,0,0,0,4,0,0,0,0,3,1,1,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,4,1,0,0,0,0,1,0,4,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,3,1],[4,1,0,4,0,0,0,0,3,1,1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2] >;
C22.157C25 in GAP, Magma, Sage, TeX
C_2^2._{157}C_2^5
% in TeX
G:=Group("C2^2.157C2^5");
// GroupNames label
G:=SmallGroup(128,2300);
// by ID
G=gap.SmallGroup(128,2300);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,1430,723,184,2019,570,360,1684,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=1,c^2=e^2=a,f^2=g^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations